Exercise 10.2 (Solution) for Class XI

Question # 1 Prove that

(i)
$$\sin(180^\circ + \theta) = -\sin\theta$$

(iii)
$$\tan(270^{\circ} - \theta) = \cot \theta$$

(v)
$$\cos(270^{\circ} + \theta) = \sin \theta$$

(vii)
$$\tan(180^{\circ} + \theta) = \tan \theta$$

(ii)
$$\cos(180^\circ + \theta) = -\cos\theta$$

(iv)
$$\cos(\theta - 180^\circ) = -\cos\theta$$

(vi)
$$\sin(\theta + 270^\circ) = -\cos\theta$$

(viii)
$$\cos(360^{\circ} - \theta) = \cos \theta$$

Solution

(i) L.H.S

$$= \sin(180 + \theta)$$

$$= \sin 180 \cos \theta + \cos 180 \sin \theta$$

$$= \sin(0)\cos \theta + (-1)\sin \theta$$

$$= 0 - \sin \theta$$

$$= -\sin \theta = \text{R.H.S}$$

(ii) L.H.S
=
$$cos(180^{\circ} + \theta)$$

$$=-\cos\theta$$

(iii) L.H.S

$$= \tan (270^{\circ} - \theta)$$

$$= \frac{\tan 270^{\circ} - \tan \theta}{1 + \tan 270^{\circ} \tan \theta}$$

$$= \frac{\tan 270^{\circ} \left(1 - \frac{\tan \theta}{\tan 270^{\circ}}\right)}{\tan 270^{\circ} \left(\frac{1}{\tan 270^{\circ}} + \tan \theta\right)}$$

$$= \frac{\left(1 - \frac{\tan \theta}{\infty}\right)}{\left(\frac{1}{\infty} + \tan \theta\right)}$$

$$= \frac{\left(1 - 0\right)}{\left(0 + \tan \theta\right)} = \frac{1}{\tan \theta}$$

$$= \cot \theta = \text{R.H.S}$$
(iv) L.H.S

 $=\cos(\theta-180^{\circ})$

Question #9 If $\sin \alpha = \frac{4}{5}$ and $\sin \beta = \frac{12}{13}$ where $\frac{\pi}{2} < \alpha < \pi$ and $\frac{\pi}{2} < \beta < \pi$. Find

(i)
$$\sin(\alpha + \beta)$$

(ii)
$$\cos(\alpha + \beta)$$

(iii)
$$tan(\alpha + \beta)$$

(iv)
$$\sin(\alpha - \beta)$$

(v)
$$\cos(\alpha - \beta)$$

(vi)
$$tan(\alpha - \beta)$$

In which quadrant do the terminal sides of the angles of measures $(\alpha + \beta)$ and $(\alpha - \beta)$ lie?

Solution

(i)
$$\sin(\alpha + \beta)$$

= $\sin \alpha \cos \beta + \cos \alpha \sin \beta$

Now we find $\sin \alpha$, $\cos \alpha$, $\sin \beta$, $\cos \beta$

given
$$\sin \alpha = \frac{4}{5}$$
 $\frac{\pi}{2} < \alpha < \pi$ $\sin \beta = \frac{12}{13}$ $\frac{\pi}{2} < \beta < \pi$

Now
$$\cos^2 \alpha = 1 - \sin^2 \alpha$$
 $\frac{\pi}{2} < \alpha < \pi$

$$= -\sqrt{1 - \sin^2 \alpha}$$
 As terminal ray of α lies in the IInd quadrant so value of cos is –ive
$$= -\sqrt{1 - \left(\frac{4}{5}\right)^2}$$

$$= -\sqrt{1 - \frac{16}{25}}$$

$$= -\sqrt{\frac{9}{25}} \Rightarrow \boxed{\cos \alpha = -\frac{3}{5}}$$

Now
$$\cos^2 \beta = 1 - \sin^2 \beta$$

 $\cos \beta = \pm \sqrt{1 - \sin^2 \beta}$ $\frac{\pi}{2} < \beta < \pi$
 $= -\sqrt{1 - \sin^2 \beta}$ As terminal ray of β lies in the IInd quadrant so value of cos is –ive $= -\sqrt{1 - \left(\frac{12}{13}\right)^2}$
 $= -\sqrt{1 - \frac{144}{169}}$
 $= -\sqrt{\frac{25}{169}} \Rightarrow \cos \beta = -\frac{5}{13}$

$$= \left(\frac{4}{5}\right)\left(-\frac{5}{13}\right) + \left(-\frac{3}{5}\right)\left(\frac{12}{13}\right)$$

$$= -\frac{20}{65} - \frac{36}{65}$$

$$= -\frac{56}{65}$$

Since
$$\sin \alpha = \frac{4}{5}$$
; $\frac{\pi}{2} < \alpha < \pi$
 $\sin \beta = \frac{12}{13}$; $\frac{\pi}{2} < \beta < \pi$

Since
$$\cos^2 \alpha = 1 - \sin^2 \alpha \implies \cos \alpha = \pm \sqrt{1 - \sin^2 \alpha}$$

$$\cos \alpha = -\sqrt{1 - \sin^2 \alpha}$$

$$\Rightarrow \cos \alpha = -\sqrt{1 - \left(\frac{4}{5}\right)^2} = -\sqrt{1 - \frac{16}{25}} = -\sqrt{\frac{9}{25}} \implies \boxed{\cos \alpha = -\frac{3}{5}}$$

Now

$$\cos^2 \beta = 1 - \sin^2 \beta$$
$$\Rightarrow \cos \beta = \pm \sqrt{1 - \sin^2 \beta}$$

As terminal ray of α lies in the IInd quadrant so value of cos is –ive

$$\cos \beta = -\sqrt{1 - \sin^2 \beta}$$

$$\Rightarrow \cos \beta = -\sqrt{1 - \left(\frac{12}{13}\right)^2} = -\sqrt{1 - \frac{144}{169}} = -\sqrt{\frac{25}{169}} \Rightarrow \cos \beta = -\frac{5}{13}$$

(i)
$$\sin(\alpha + \beta) = \sin \alpha \cos \beta + \cos \alpha \sin \beta$$

= $\left(\frac{4}{5}\right)\left(-\frac{5}{13}\right) + \left(-\frac{3}{5}\right)\left(\frac{12}{13}\right) = -\frac{20}{65} - \frac{36}{65} = -\frac{56}{65}$

(ii)
$$\cos(\alpha + \beta) = \cos\alpha\cos\beta - \sin\alpha\sin\beta$$

= $\left(-\frac{3}{5}\right)\left(-\frac{5}{13}\right) - \left(\frac{4}{5}\right)\left(\frac{12}{13}\right) = \frac{15}{65} - \frac{48}{65} = -\frac{33}{65}$

(iii)
$$\tan(\alpha + \beta) = \frac{\sin(\alpha + \beta)}{\cos(\alpha + \beta)} = \frac{-\frac{56}{65}}{-\frac{33}{65}} = \frac{56}{33}$$

Since $\sin(\alpha + \beta)$ is –ive so terminal are of $\alpha + \beta$ is in IIIrd or IVth quadrant and $\cos(\alpha + \beta)$ is –ive so terminal are of $\alpha + \beta$ is in IInd or IIIrd quadrant therefore terminal ray of $\alpha + \beta$ lies in the IIIrd quadrant.

Similarly after solving (iv), (v) & (vi) find quadrant for $\alpha - \beta$ yourself.

(iv), (v) & (vi)

Class XI Exercise 10.2 Question # 10 Find $\sin(\alpha + \beta)$ and $\cos(\alpha + \beta)$, given that

(i) $\tan \alpha = \frac{3}{4}$, $\sin \beta = \frac{5}{13}$ and neither the terminal side of the angle of measure α nor that of β is in the I quadrant.

Solution:

(i) $\sin(\alpha + \beta)$ $=\sin\alpha\cos\beta+\cos\alpha\sin\beta$

Now we find $\sin \alpha$, $\cos \alpha$, $\sin \beta$, $\cos \beta$

Since
$$\tan \alpha = \frac{3}{4}$$

Now $\sec^2 \alpha = 1 + \tan^2 \alpha$
 $\sec \alpha = \pm \sqrt{1 + \tan^2 \alpha}$
 $= -\sqrt{1 + \tan^2 \alpha}$ As $\tan \alpha$ is +ive and terminal arm of α in not in the Ist quad. Therefor it lies in IIIrd quad. and value of sec is –ive
$$= -\sqrt{1 + \frac{9}{16}} = -\sqrt{\frac{25}{16}} = -\frac{5}{4}$$
Now $\cos \alpha = \frac{1}{\sec \alpha} = \frac{1}{-\frac{5}{4}}$ $\Rightarrow \cos \alpha = -\frac{4}{5}$
Now $\frac{\sin \alpha}{\cos \alpha} = \tan \alpha$ $\Rightarrow \sin \alpha = \tan \alpha \cos \alpha$

Now
$$\frac{\sin \alpha}{\cos \alpha} = \tan \alpha \implies \sin \alpha = \tan \alpha \cos \alpha$$

 $\Rightarrow \sin \alpha = \left(\frac{3}{4}\right)\left(-\frac{4}{5}\right) \implies \left[\sin \alpha = -\frac{3}{5}\right]$

Since $\cos \beta = \frac{5}{13}$ Now $\sin^2 \beta = 1 - \cos^2 \beta$ $\sin \beta = \pm \sqrt{1 - \cos^2 \beta}$

As $\cos \beta$ is +ive and terminal arm of β is not in the Ist quad., therefore it lies in fourth quadrant so value of sin is -ive

$$= -\sqrt{1 - \frac{25}{169}} = -\sqrt{\frac{144}{169}} \implies \boxed{\sin \beta = -\frac{12}{13}}$$

$$= \left(-\frac{3}{5}\right) \left(\frac{5}{13}\right) + \left(-\frac{4}{5}\right) \left(-\frac{12}{13}\right)$$

$$= -\frac{3}{13} + \frac{48}{65} \implies \boxed{\sin(\alpha + \beta) = \frac{33}{65}}$$

Class XI Exercise 10.2 Question # 10 Find $\sin(\alpha + \beta)$ and $\cos(\alpha + \beta)$, given that

(ii) $\tan \alpha = -\frac{15}{8}$, $\sin \beta = -\frac{7}{25}$ and neither the terminal side of the angle of measure α nor that of β is in the IV quadrant.

Question # 11

Prove that:
$$\frac{\cos 8^{\circ} - \sin 8^{\circ}}{\cos 8^{\circ} + \sin 8^{\circ}} = \tan 37^{\circ}$$

R.H.S =
$$\tan 37^{\circ}$$

= $\tan (45 - 8)$
= $\frac{\tan 45^{\circ} - \tan 8^{\circ}}{1 + \tan 45^{\circ} \tan 8^{\circ}}$
= $\frac{1 - \tan 8^{\circ}}{1 + (1) \tan 8^{\circ}}$

$$=\frac{1-\frac{\sin 8^{\circ}}{\cos 8^{\circ}}}{1+\frac{\sin 8^{\circ}}{\cos 8^{\circ}}}$$

$$=\frac{\cos 8^{\circ} - \sin 8^{\circ}}{\cos 8^{\circ} + \sin 8^{\circ}}$$

$$\cos 8^{\circ}$$

$$\frac{\cos 8^{\circ} - \sin 8^{\circ}}{\cos 8^{\circ} + \sin 8^{\circ}}$$

$$= L.H.S$$

$$: 37 = 45 - 8$$

Question # 12 If α, β, γ are the angles of a tringle ABC, show that

$$\cot\frac{\beta}{2} + \cot\frac{\alpha}{2} + \cot\frac{\gamma}{2} = \cot\frac{\alpha}{2}\cot\frac{\beta}{2}\cot\frac{\gamma}{2}$$

Solution

Since α , β and γ are angles of triangle therefore

Since
$$\alpha, \beta$$
 and γ are anights of triangle inertials
$$\alpha + \beta + \gamma = 180$$

$$\Rightarrow \alpha + \beta = 180 - \gamma$$

$$\Rightarrow \frac{\alpha + \beta}{2} = \frac{180 - \gamma}{2}$$

$$\Rightarrow \frac{\alpha}{2} + \frac{\beta}{2} = 90 - \frac{\gamma}{2}$$
Now
$$\tan\left(\frac{\alpha}{2} + \frac{\beta}{2}\right) = \tan\left(90 - \frac{\gamma}{2}\right)$$

$$\Rightarrow \frac{\tan\frac{\alpha}{2} + \tan\frac{\beta}{2}}{1 - \tan\frac{\alpha}{2} \tan\frac{\beta}{2}} = \cot\frac{\gamma}{2} \quad \because \quad \tan\left(90 - \frac{\gamma}{2}\right) = \cot\frac{\gamma}{2}$$

$$\Rightarrow \frac{\tan\frac{\alpha}{2} \tan\frac{\beta}{2} \left(\frac{1}{\tan\frac{\beta}{2}} + \frac{1}{\tan\frac{\alpha}{2}}\right)}{\tan\frac{\alpha}{2} \tan\frac{\beta}{2} \left(\frac{1}{\tan\frac{\alpha}{2} \tan\frac{\beta}{2}} - 1\right)} = \cot\frac{\gamma}{2}$$

$$\Rightarrow \cot\frac{\beta}{2} + \cot\frac{\alpha}{2} = \cot\frac{\gamma}{2} \left(\cot\frac{\alpha}{2}\cot\frac{\beta}{2} - 1\right)$$

$$\Rightarrow \cot\frac{\beta}{2} + \cot\frac{\alpha}{2} = \cot\frac{\alpha}{2}\cot\frac{\beta}{2}\cot\frac{\gamma}{2} - \cot\frac{\gamma}{2}$$

$$\Rightarrow \cot\frac{\beta}{2} + \cot\frac{\alpha}{2} = \cot\frac{\alpha}{2}\cot\frac{\beta}{2}\cot\frac{\beta}{2}\cot\frac{\gamma}{2}$$

$$\Rightarrow \cot\frac{\beta}{2} + \cot\frac{\alpha}{2} + \cot\frac{\gamma}{2} = \cot\frac{\alpha}{2}\cot\frac{\beta}{2}\cot\frac{\gamma}{2}\cot\frac{\gamma}{2}$$

Question # 13 If $\alpha + \beta + \gamma = 180^{\circ}$, show that $\cot \alpha \cot \beta + \cot \beta \cot \gamma + \cot \gamma \cot \alpha = 1$. Solution

Since α , β and γ are angles of triangle therefore

$$\alpha + \beta + \gamma = 180$$

$$\Rightarrow \alpha + \beta = 180 - \gamma$$

Now $\tan(\alpha + \beta) = \tan(180 - \gamma)$

$$\Rightarrow \frac{\tan \alpha + \tan \beta}{1 - \tan \alpha \tan \beta} = \tan (2(90) - \gamma)$$

$$\Rightarrow \frac{\tan \alpha + \tan \beta}{1 - \tan \alpha \tan \beta} = -\tan \gamma$$

$$\Rightarrow \tan \alpha + \tan \beta = -\tan \gamma (1 - \tan \alpha \tan \beta)$$

$$\Rightarrow \tan \alpha + \tan \beta = -\tan \gamma + \tan \alpha \tan \beta \tan \gamma$$

$$\Rightarrow \tan \alpha + \tan \beta + \tan \gamma = \tan \alpha \tan \beta \tan \gamma$$

Dividing through out by $\tan \alpha \tan \beta \tan \gamma$

$$\frac{\tan \alpha}{\tan \alpha \tan \beta \tan \gamma} + \frac{\tan \beta}{\tan \alpha \tan \beta \tan \gamma} + \frac{\tan \gamma}{\tan \alpha \tan \beta \tan \gamma} = \frac{\tan \alpha \tan \beta \tan \gamma}{\tan \alpha \tan \beta \tan \gamma}$$

$$\Rightarrow$$
 cot β cot γ + cot α cot γ + cot α cot β = 1

$$\Rightarrow \cot \alpha \cot \beta + \cot \beta \cot \gamma + \cot \gamma \cot \alpha = 1$$

Question # 14

Express the following in the form $r\sin(\theta + \phi)$ or $r\sin(\theta - \phi)$, where terminal sides of the angles of measure θ and ϕ are in the first quadrant:

- (i) $12\sin\theta + 5\cos\theta$
- (ii) $3\sin\theta 4\cos\theta$
- (iii) $\sin \theta \cos \theta$

- (iv) $5\sin\theta 4\cos\theta$
- (v) $\sin \theta + \cos \theta$

Solution

(i) $12\sin\theta + 5\cos\theta$

Now we find θ and ϕ

Squaring and adding (i) and (ii)

$$(12)^2 + (5)^2 = r^2 \cos^2 \varphi + r^2 \sin^2 \varphi$$

$$\Rightarrow 144 + 25 = r^2 (\cos^2 \varphi + \sin^2 \varphi)$$

$$\Rightarrow 169 = r^2 (1)$$

$$\Rightarrow r = \sqrt{169} = 13$$

Dividing (i) and (ii)

$$\frac{5}{12} = \frac{r \sin \varphi}{r \cos \varphi}$$

$$\frac{5}{12} = \tan \varphi$$

$$\Rightarrow \varphi = \tan^{-1} \frac{5}{12}$$

 $12\sin\theta + 5\cos\theta = r\sin(\theta + \varphi)$ here r = 13 and $\varphi = \tan^{-1}\frac{5}{12}$

(ii) $3\sin\theta - 4\cos\theta$

$$3\sin\theta - 4\cos\theta = r\cos\varphi\sin\theta + r\sin\varphi\cos\theta$$
$$= r(\cos\varphi\sin\theta + \sin\varphi\cos\theta)$$
$$= r\sin(\theta + \varphi)$$

Now we find θ and ϕ

Squaring and adding (i) and (ii)

$$(3)^{2} + (-4)^{2} = r^{2} \cos^{2} \varphi + r^{2} \sin^{2} \varphi$$

$$\Rightarrow 9 + 16 = r^{2} (\cos^{2} \varphi + \sin^{2} \varphi)$$

$$\Rightarrow 25 = r^{2} (1)$$

$$\Rightarrow r = \sqrt{25} = 5$$

Dividing (i) and (ii)
$$\frac{-4}{3} = \frac{r \sin \varphi}{r \cos \varphi}$$

$$-\frac{4}{3} = \tan \varphi$$

$$\Rightarrow \varphi = \tan^{-1} \left(-\frac{4}{3} \right)$$

$$3\sin\theta - 4\cos\theta = r\sin(\theta + \varphi)$$
 here $r = 5$ and $\varphi = \tan^{-1}\left(-\frac{4}{3}\right)$

(iii)
$$\sin \theta - \cos \theta$$

$$\sin \theta - \cos \theta = r \cos \varphi \sin \theta + r \sin \varphi \cos \theta$$
$$= r (\cos \varphi \sin \theta + \sin \varphi \cos \theta)$$
$$= r \sin (\theta + \varphi)$$

Now we find θ and ϕ

Squaring and adding (i) and (ii)

$$(1)^{2} + (-1)^{2} = r^{2} \cos^{2} \varphi + r^{2} \sin^{2} \varphi$$

$$\Rightarrow 1 + 1 = r^{2} (\cos^{2} \varphi + \sin^{2} \varphi)$$

$$\Rightarrow 2 = r^{2} (1)$$

$$\Rightarrow r = \sqrt{2}$$
Dividing (i) and (ii)

$$\frac{-1}{1} = \frac{r \sin \varphi}{r \cos \varphi}$$

$$-1 = \tan \varphi$$

$$\Rightarrow \varphi = \tan^{-1} (-1)$$

$$\sin \theta - \cos \theta = r \sin(\theta + \varphi)$$
 here $r = \sqrt{2}$ and $\varphi = \tan^{-1}(-1)$

(v)
$$\cos(270^{\circ} + \theta) = \sin \theta$$

(vi)
$$\sin(\theta + 270^\circ) = -\cos\theta$$

(vii)
$$\tan(180^{\circ} + \theta) = \tan \theta$$

(viii)
$$\cos(360^{\circ} - \theta) = \cos \theta$$

(iv) $5\sin\theta - 4\cos\theta$

Let
$$5 = r \cos \varphi$$
(i)

and
$$-4 = r \sin \varphi$$
(ii)

$$5\sin\theta - 4\cos\theta = r\cos\varphi\sin\theta + r\sin\varphi\cos\theta$$

$$= r(\cos\varphi\sin\theta + \sin\varphi\cos\theta)$$

Now we find θ and ϕ

Squaring and adding (i) and (ii)

$$(5)^2 + (-4)^2 = r^2 \cos^2 \varphi + r^2 \sin^2 \varphi$$

$$\Rightarrow 25 + 16 = r^2 (\cos^2 \varphi + \sin^2 \varphi)$$

$$\Rightarrow 41 = r^2 (1)$$

$$\Rightarrow r = \sqrt{41}$$

Dividing (i) and (ii)
$$\frac{-4}{5} = \frac{r \sin \varphi}{r \cos \varphi}$$

$$-\frac{4}{5} = \tan \varphi$$

$$\Rightarrow \varphi = \tan^{-1} \left(-\frac{4}{5} \right)$$

$$= r \sin(\theta + \varphi)$$
 here $r = \sqrt{41}$ and $\varphi = \tan^{-1}\left(-\frac{4}{5}\right)$

(v) $\sin\theta + \cos\theta$

Let
$$1 = r \cos \varphi$$
(i)

and
$$1 = r \sin \varphi \dots (ii)$$

$$\sin\theta + \cos\theta = r\cos\varphi\sin\theta + r\sin\varphi\cos\theta$$

$$= r(\cos\varphi\sin\theta + \sin\varphi\cos\theta)$$

$$= r \sin(\theta + \varphi)$$

Now we find θ and ϕ

Squaring and adding (i) and (ii)

$$(1)^{2} + (1)^{2} = r^{2} \cos^{2} \varphi + r^{2} \sin^{2} \varphi$$

$$\Rightarrow 1 + 1 = r^{2} (\cos^{2} \varphi + \sin^{2} \varphi)$$

$$\Rightarrow 2 = r^{2} (1)$$

$$\Rightarrow r = \sqrt{2}$$

Dividing (i) and (ii)

$$\frac{1}{1} = \frac{r \sin \varphi}{r \cos \varphi}$$

$$1 = \tan \varphi$$

$$\Rightarrow \varphi = \tan^{-1} ($$

$$\Rightarrow \varphi = \tan^{-1}(1)$$

$$\sin \theta + \cos \theta = r \sin(\theta + \varphi)$$
 here $r = \sqrt{2}$ and $\varphi = \tan^{-1}(1)$

(vi)

Question # 2 Find the values of the following:

(i) sin 15°

- (ii) cos15°
- (iii) tan15°

Solution

(i)
$$\sin 15^{\circ}$$

 $= \sin (45 - 30)$
 $= \sin 45^{\circ} \cos 30^{\circ} - \cos 45^{\circ} \sin 30^{\circ}$
 $= \left(\frac{1}{\sqrt{2}}\right) \left(\frac{\sqrt{3}}{2}\right) - \left(\frac{1}{\sqrt{2}}\right) \left(\frac{1}{2}\right)$
 $= \frac{\sqrt{3}}{2\sqrt{2}} - \frac{1}{2\sqrt{2}}$
 $= \frac{\sqrt{3} - 1}{2\sqrt{2}}$

(ii)
$$\cos 15^{\circ}$$

= $\cos (45-30)$
= $\cos 45^{\circ} \cos 30^{\circ} + \sin 45^{\circ} \sin 30^{\circ}$
= $\frac{\sqrt{3}}{2\sqrt{2}} + \frac{1}{2\sqrt{2}}$
= $\frac{\sqrt{3}+1}{2\sqrt{2}}$

(iii)
$$\tan 15^{\circ}$$

$$= \tan (45 - 30)$$

$$= \frac{\tan 45^{\circ} - \tan 30^{\circ}}{1 + \tan 45^{\circ} \tan 30^{\circ}}$$

$$= \frac{1 - \frac{1}{\sqrt{3}}}{1 + (1)(\frac{1}{\sqrt{3}})} = \frac{1 - \frac{1}{\sqrt{3}}}{1 + \frac{1}{\sqrt{3}}}$$

$$= \frac{\sqrt{3} - 1}{\sqrt{3} + 1}$$

For (iv),

Hint: Use 105 = 60 + 45 in

(v) and (vi),

Hint: Use 105 = 60 + 45 in these questions

Question # 3 Prove that:

(i)
$$\sin(45^\circ + \alpha) = \frac{1}{\sqrt{2}}(\sin\alpha + \cos\alpha)$$
 (ii) $\cos(45^\circ + \alpha) = \frac{1}{\sqrt{2}}(\cos\alpha - \sin\alpha)$

$$\frac{\cot \alpha}{\text{(i) L.H.S}} = \sin(45 + \alpha)$$

$$= \sin 45^{\circ} \cos \alpha + \cos 45^{\circ} \sin \alpha$$

$$= \left(\frac{1}{\sqrt{2}} \cos \alpha + \frac{1}{\sqrt{2}} \sin \alpha\right)$$

$$= \frac{1}{\sqrt{2}} (\cos \alpha + \sin \alpha)$$

$$= \frac{1}{\sqrt{2}} (\sin \alpha + \cos \alpha) = \text{R.H.S}$$

(ii) L.H.S =
$$\cos(45^{\circ} + \alpha)$$

$$=\frac{1}{\sqrt{2}}(\cos\alpha-\sin\alpha)$$

Question # 4 Prove that:

(i)
$$\tan(45 + A) \tan(45 - A) = 1$$

(ii)
$$\tan\left(\frac{\pi}{4} - \theta\right) + \tan\left(\frac{3\pi}{4} + \theta\right) = 0$$

(iii)
$$\sin\left(\theta + \frac{\pi}{6}\right) + \cos\left(\theta + \frac{\pi}{3}\right) = \cos\theta$$

(iv)
$$\frac{\sin\theta - \cos\theta \tan\frac{\theta}{2}}{\cos\theta + \sin\theta \tan\frac{\theta}{2}} = \tan\frac{\theta}{2}$$

(v)
$$\frac{1 - \tan \theta \tan \varphi}{1 + \tan \theta \tan \varphi} = \frac{\cos(\theta + \varphi)}{\cos(\theta - \varphi)}$$

(i) L.H.S =
$$\tan(45 + A) \tan(45 - A)$$

$$= \left(\frac{\tan 45^{\circ} + \tan A}{1 - \tan 45^{\circ} \tan A}\right) \left(\frac{\tan 45^{\circ} - \tan A}{1 + \tan 45^{\circ} \tan A}\right)$$

$$= \left(\frac{1 + \tan A}{1 - (1) \tan A}\right) \left(\frac{1 - \tan A}{1 + (1) \tan A}\right)$$

$$= \left(\frac{1 + \tan A}{1 - \tan A}\right) \left(\frac{1 - \tan A}{1 + \tan A}\right)$$

$$= 1 = \text{R.H.S}$$

(ii) L.H.S =
$$\tan\left(\frac{\pi}{4} - \theta\right) + \tan\left(\frac{3\pi}{4} + \theta\right)$$

$$= \left(\frac{\tan\frac{\pi}{4} - \tan\theta}{1 + \tan\frac{\pi}{4} \tan\theta}\right) + \left(\frac{\tan\frac{3\pi}{4} + \tan\theta}{1 - \tan\frac{3\pi}{4} \tan\theta}\right)$$

$$= \left(\frac{1 - \tan\theta}{1 + (1) \tan\theta}\right) + \left(\frac{-1 + \tan\theta}{1 - (-1) \tan\theta}\right)$$

$$= \left(\frac{1 - \tan\theta}{1 + \tan\theta}\right) + \left(\frac{-1 + \tan\theta}{1 + \tan\theta}\right)$$

$$= \frac{1 - \tan\theta - 1 + \tan\theta}{1 + \tan\theta}$$

$$= \frac{0}{1 + \tan\theta}$$

$$= 0 = \text{R.H.S}$$

(iii) L.H.S =
$$\sin\left(\theta + \frac{\pi}{6}\right) + \cos\left(\theta + \frac{\pi}{3}\right)$$

= $\left(\sin\theta\cos\frac{\pi}{6} + \cos\theta\sin\frac{\pi}{6}\right) + \left(\cos\theta\cos\frac{\pi}{3} - \sin\theta\sin\frac{\pi}{3}\right)$
= $\left(\sin\theta\frac{\sqrt{3}}{2} + \cos\theta\frac{1}{2}\right) + \left(\cos\theta\frac{1}{2} - \sin\theta\frac{\sqrt{3}}{2}\right)$
= $\frac{\sqrt{3}}{2}\sin\theta + \frac{1}{2}\cos\theta + \frac{1}{2}\cos\theta - \frac{\sqrt{3}}{2}\sin\theta$
= $\cos\theta = R.H.S.$

(iv) L.H.S =
$$\frac{\sin \theta - \cos \theta \tan \frac{\theta}{2}}{\cos \theta + \sin \theta \tan \frac{\theta}{2}}$$

$$= \frac{\sin \theta - \cos \theta}{\cos \frac{\theta}{2}} \frac{\sin \frac{\theta}{2}}{\cos \frac{\theta}{2}}$$
$$\cos \theta + \sin \theta \frac{\sin \frac{\theta}{2}}{\cos \frac{\theta}{2}}$$

$$=\frac{\frac{\sin\theta\cos\frac{\theta}{2} - \cos\theta\sin\frac{\theta}{2}}{\cos\frac{\theta}{2}}}{\frac{\cos\theta\cos\frac{\theta}{2} + \sin\theta\sin\frac{\theta}{2}}{\cos\frac{\theta}{2}}}$$

$$= \frac{\sin\theta\cos\frac{\theta}{2} - \cos\theta\sin\frac{\theta}{2}}{\cos\theta\cos\frac{\theta}{2} + \sin\theta\sin\frac{\theta}{2}}$$

$$=\frac{\sin\left(\theta-\frac{\theta}{2}\right)}{\cos\left(\theta-\frac{\theta}{2}\right)}$$

$$=\frac{\sin(\theta_2)}{\cos(\theta_2)}$$

$$= \tan \frac{\theta}{2} = \text{R.H.S}$$

(v) L.H.S =
$$\frac{1 - \tan \theta \tan \varphi}{1 + \tan \theta \tan \varphi}$$

$$= \frac{1 - \frac{\sin \theta}{\cos \theta} \frac{\sin \varphi}{\cos \varphi}}{1 + \frac{\sin \theta}{\cos \theta} \frac{\sin \varphi}{\cos \varphi}}$$

$$= \frac{\frac{\cos\theta\cos\varphi - \sin\theta\sin\varphi}{\cos\theta\cos\varphi}}{\cos\theta\cos\varphi + \sin\theta\sin\varphi}$$

$$= \frac{\cos\theta\cos\varphi - \sin\theta\sin\varphi}{\cos\theta\cos\varphi + \sin\theta\sin\varphi}$$

 $\cos\theta\cos\varphi$

$$=\frac{\cos(\theta+\varphi)}{\cos(\theta-\varphi)}=\text{R.H.S}$$

Question #5

Show that: $\cos(\alpha + \beta) \cos(\alpha - \beta) = \cos^2 \alpha - \sin^2 \beta = \cos^2 \beta - \sin^2 \alpha$

Solution

Question # 6

Solution

Hint: Just open the formulas

(ii) $\cot(\alpha - \beta) = \frac{\cot \alpha \cot \beta + 1}{\cot \beta - \cot \alpha}$

Question # 7 Show that

(i)
$$\cot(\alpha + \beta) = \frac{\cot \alpha \cot \beta - 1}{\cot \alpha + \cot \beta}$$

(iii)
$$\frac{\tan \alpha + \tan \beta}{\tan \alpha - \tan \beta} = \frac{\sin(\alpha + \beta)}{\sin(\alpha - \beta)}$$

(i) L.H.S =
$$\cot(\alpha + \beta)$$

$$= \frac{1}{\tan(\alpha + \beta)}$$

$$= \frac{1}{\tan \alpha + \tan \beta}$$

$$= \frac{1 - \tan \alpha \tan \beta}{\tan \alpha + \tan \beta}$$

$$= \frac{1 - \tan \alpha \tan \beta}{\tan \alpha + \tan \beta}$$

$$= \frac{\tan \alpha \tan \beta}{\tan \alpha + \tan \beta}$$

$$= \frac{\cot \alpha \cot \beta - 1}{\cot \beta + \cot \alpha} = \text{R.H.S}$$

(ii) L.H.S =
$$\cot(\alpha - \beta)$$

= $\frac{1}{\tan(\alpha - \beta)}$
= $\frac{1}{\tan \alpha - \tan \beta}$
= $\frac{1 + \tan \alpha \tan \beta}{\tan \alpha - \tan \beta}$
= $\frac{\tan \alpha \tan \beta}{\tan \alpha - \tan \beta}$
= $\frac{\tan \alpha \tan \beta}{\tan \alpha + \tan \beta} (\frac{1}{\tan \alpha \tan \beta} + 1)$
= $\frac{\cot \alpha \cot \beta + 1}{\cot \beta - \cot \alpha} = \text{R.H.S}$

(iii) L.H.S =
$$\frac{\tan \alpha + \tan \beta}{\tan \alpha - \tan \beta}$$

$$= \frac{\frac{\sin \alpha}{\cos \alpha} + \frac{\sin \beta}{\cos \beta}}{\frac{\sin \alpha}{\cos \alpha} - \frac{\sin \beta}{\cos \beta}}$$

$$= \frac{\frac{\sin \alpha \cos \beta + \cos \alpha \sin \beta}{\cos \alpha \cos \beta}}{\frac{\sin \alpha \cos \beta - \cos \alpha \sin \beta}{\cos \alpha \cos \beta}}$$

$$= \frac{\sin \alpha \cos \beta + \cos \alpha \sin \beta}{\sin \alpha \cos \beta - \cos \alpha \sin \beta}$$

$$= \frac{\sin \alpha \cos \beta - \cos \alpha \sin \beta}{\sin \alpha \cos \beta - \cos \alpha \sin \beta}$$

$$= \frac{\sin(\alpha + \beta)}{\sin(\alpha - \beta)} = \text{R.H.S}$$

Question #8 If $\sin \alpha = \frac{4}{5}$ and $\cos \alpha = \frac{40}{41}$ where $0 < \alpha < \frac{\pi}{2}$ and $0 < \beta < \frac{\pi}{2}$.

Show that $\sin(\alpha - \beta) = \frac{133}{205}$

Solution

L.H.S =
$$\sin(\alpha - \beta)$$

= $\sin \alpha \cos \beta - \cos \alpha \sin \beta$

Now we find $\sin \alpha$, $\cos \alpha$, $\sin \beta$, $\cos \beta$

given
$$\sin \alpha = \frac{4}{5}$$
 ; $0 < \alpha < \frac{\pi}{2}$ $\cos \alpha = \frac{40}{41}$; $0 < \beta < \frac{\pi}{2}$

 $0 < \alpha < \frac{\pi}{2}$

 $0 < \beta < \frac{\pi}{2}$

Now
$$\cos^2 \alpha = 1 - \sin^2 \alpha$$

 $\cos \alpha = \pm \sqrt{1 - \sin^2 \alpha}$ $0 < \alpha < \frac{\pi}{2}$
 $= \sqrt{1 - \sin^2 \alpha}$ Since terminal ray of α is in the first quadrant so value of \cos is +ive
$$= \sqrt{1 - \left(\frac{4}{5}\right)^2}$$

$$= \sqrt{1 - \frac{16}{25}} = \sqrt{\frac{9}{25}}$$

$$\cos \alpha = \frac{3}{5}$$

Now
$$\sin^2 \beta = 1 - \cos^2 \beta$$

 $\sin \beta = \pm \sqrt{1 - \cos^2 \beta}$
 $= \sqrt{1 - \cos^2 \beta}$
 $= \sqrt{1 - \left(\frac{40}{41}\right)^2}$
 $= \sqrt{1 - \frac{1600}{1681}} = \sqrt{\frac{81}{1681}}$
 $\sin \beta = \frac{9}{41}$

$$= {4 \choose 5} {40 \choose 41} - {3 \choose 5} {9 \choose 41}$$
$$= {160 \choose 205} - {27 \over 205} = {133 \choose 205} = \text{R.H.S}$$